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A Bessel function spectral method for obtaining the quantum-mechanical scattering wave 
functions, developed prevrously, was tested for the case that the potentials are complex 
Gaussian functions since, in this particular cast, the required overlap integrals can be 
evaluated with great accuracy. The dependence of the elastic scattering S-matrix on the size 
of the space of the Bessel basis, on the choice of the sub-set of the basis functions, and on the 
choice of the matching radius was examined. The analysis is carried out to an accuracy of 
eight signilicant figures. ! IYYI Acadermc Press. Inc 

I. ~NI~KOLXJCTION 

Spectral methods for solving the Schrodinger equation for the case of bound state 
problems are well studied [ 1, 21. If the functions to be approximated decrease 
exponentially, then it is known that the spectral expansion converges exponentially. 
However, in the case of scattering problems the properties of the spectral methods 
are less well understood because the scattering wave functions to be approximated 
are oscillatory and have amplitudes which asymptotically remain constant [Z]. In 
this case one can include among the basis functions several which have the same 
asymptotic behavior (to within a constant to be determined) as the scattering func- 
tion to be approximated [2]. A similar technique is used in the variational 
approaches lo the scattering solutions [3, 43. 

The present spectral method is being developed specifically to solve scattering 
problems [S]. In this method, which is of the Galerkin type, the spectral basis is 
composed of a discrete set of Bessel functions, each of which satisfies the 
appropriate physical scattering boundary condition. This is accomplished by intro- 
ducing a sufficiently large radius R and, for each partial wave, matching the basis 
functions to the outgoing external wave function at R. This method will be denoted 
as the Sturmian spectral method (SSM) in what follows. Bessel functions rather 
than other functions such as polynomials are prcfcrred, because for each partial 
wave they have the appropriate behavior of the exact scattering function, both at 
the origin and asymptotically. A study [6] of the Sturmian eigenfunctions of a scat- 
tering problem indeed showed that for the high partial waves, i.e., for angular 
momentum number L larger than 3 or 4, a Chebyshev expansion gave less accuracy 
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than a Bessel expansion. Even though there are other methods for solving the quan- 
tum-mechanical scattering problem [3,4, 71 which may be more efficient than the 
present one, it is the purpose of the present study to examine the numerical 
accuracy properties of the SSM in view of the usefulness of the SSM for special 
applications in physics. 

One useful application of the SSM is in the calculation of effective scattering 
potentials [8-lo]; another is in taking into account the Pauli exclusion principle in 
the interaction between two clusters of identical particles [ 11, 123. The first applica- 
tion arises because the spectral representation of the wave-functions automatically 
leads to expressions for the many-channel Green’s functions [8, IO]. This enables 
one to eliminate channels which one does not want to carry explicitly, thus giving 
rise to effective potentials in those channels which are kept. An example is the 
Feshbach optical model potential. It represents, in the elastic channel, the effect of 
all the virtual nuclear excitations which take place during the scattering process of 
a nucleon on a nucleus. A demonstration of the feasibility of calculating the 
Feshbach potential with this SSM has recently been given for a schematic coupled 
channel example [lo], and further work along these lines is in progress [ 131. 

The second application of the SSM, mentioned above, consists in the formulation 
of reaction theory for a system of indistinguishable particles. The difficulty here is 
in taking into account the Pauli exclusion principle. If all nucleons are bound, i.e., 
if all channels are closed, the conventional independent particle theory offers a 
suitable scheme. But when one or more nucleons are in the continuum, i.e., if one 
or more channels are open, then the corresponding extension of the independent 
particle formulation becomes very cumbersome [14]. In this case expansions into 
basis states other than the independent particle Shell-model states have been 
developed [ 151. The expansion in terms of the Sturmian functions discussed here 
looks very promising in that only a very small set of basis functions (approximately 
six) is required in order to achieve good accuracy [ 111. 

There are two basic types of Sturmian spectral functions. Those which asymptoti- 
cally decrease exponentially [9, 161 (the negative energy case) and those which 
asymptotically oscillate like outgoing waves [ 177191 (positive energy Sturmians). 
Both form a discrete set which is complete in the radial region where the eigenvalue 
potential which generates them is not zero [17]. As the size of the eigenvalue 
increases, the strength of the corresponding eigenvalue potential increases and the 
Sturmian functions acquire successively more nodes in the region of this potential. 
The present Sturmian functions [S] correspond to the positive energy category. A 
matching radius R is defined, and the eigenvalue potential is a square well in the 
radial interval from 0 to R. These functions, denoted as CJ~~, in this case are propor- 
tional to spherical Bessel functions of complex wave number Ki. At the point R 
they are matched to outgoing wave Hankel functions of the asymptotic physical 
wave number k. In the interval (O-R) the &s are orthogonal. These functions are 
denoted as Bessel Sturmian functions, or BSF. More details are given in Section 3. 

Positive energy Sturmians were first defined by Peierls in 1938, when they were 
used to develop R-matrix theory for the description of resonances in neutron 
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nucleus scattering at low energies [ 181. Negative energy Sturmians were first used 
intensively by Rotenberg in 1962 [16]. Subsequently, both positive and negative 
energy Sturmian functions have been used to construct separable representations of 
two-body scattering T-matrices [19] for the purpose of applying them to three- 
body calculations, and also for directly solving three-body problems [20]. 

In most of these applications not much attention has been paid to the question 
of accuracy. What makes the present accuracy study feasible is that the indefinite 
integrals, which are needed to set up the algebraic system of equations for the 
expansion coefficients, can now be calculated with high precision for the case that 
the potential is of the Gaussian form [21]. These integrals are obtained with a 
precision of better than 12 significant figures, and the scattering matrix element, 
which will be used as a measure for the accuracy tests, is calculated here with an 
accuracy of better than eight significant figures. In Section 2 the main equations 
which define the SSM will be presented; in Section 3 the accuracy tests will be 
described; and Section 4 contains the summary and conclusions. 

II. FORMALISM 

The coupled radial equations to be solved are 

(T, - 4,) E(y) + c V,,,Ar) %Ar) = 0 (2.1 1 II’= I 
n = 1, 2, . . . . N, 

where each channel is represented by the subscript n, E,, is the channel energy, the 
channel coupling potentials are I’,,,,,,, T, is the partial wave kinetic energy operator 
- (??2/2m)(LP/d? - L(L + 1 )/r2), and Fn are the radial partial wave functions in 
each channel to be solved for. Asymptotically they are all outgoing waves, with the 
exception of the incident channel n = 1, where F, also has an admixture of an 
ingoing wave of unit amplitude. The physical channel wave numbers k,, are related 
to the channel energies E,, by (h2/2m) kz = E,,. The spherical regular and outgoing 
irregular Bessel functions are denoted byj, and hL, respectively, and fL and g, will 
be used to denote 

fL(Z) = ;jL(z); g:.+ ) = -‘h,(z). (2.2) 

Here g :+’ is asymptotically an outgoing function in z of the form exp(iz - iLn/2). 
The function hL(z) is equal to i/z:)(z), and both j, and hy) are defined in 
Abramowitz and Stegun [22]. 

The functions in each channel n which are needed for the calculation of the 8’s 
are of two types: the undistorted and uncoupled radial wave functions F,l(r) which 
asymptotically have both ingoing and outgoing waves 

F,,(r) = fdk,,r) (2.3 ) 
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and the set of Bessel Sturmian functions dni(r), j= 1, 2, . . . . which asymptotically 
have only outgoing waves 

4,,j(r) = Y,JL(K,r), r<R 

4 (r)=P .g’+)(k 1 >‘I nl L ,,r 3 r > R. 

(2.4a) 

(2.4b) 

According to Eq. (2.4b), outside the boundary radius R all the BSFs for a given 
channel are proportional to the same outgoing wave function gp ). The normaliza- 
tion constants Y,~, in Eq. (2.4a) are obtained from the condition 

This integral can be carried out analytically, as is explained in Appendix A. 
This set of definitions can be easily generalized to the case in which long-range 

potentials, such as the Coulomb potential, are present. For distances r larger than 
R the functions f‘ and g are then replaced by regular and outgoing irregular 
Coulomb functions, but for r < R the definition in terms of the spherical Bessel 
functions remains valid. This changes the value of the complex wave numbers K,,,, 
since the functions d given by Eq. (4a) are now matched to outgoing Coulomb 
rather than Bessel functions. The functions F,,(r) have to be renormalized for r < R, 
and they have to be matched to a combination of regular and irregular Coulomb 
functions at r = R. This generalization has been tested and it causes no special 
numerical difficulties. Other methods of including the long-range part of a 
distorting potential also exist [23]. In the present discussion, it will be assumed 
that no long-ranged potentials exist, such as the Coulomb potential, and all poten- 
tials (not including the centripetal potential) beyond the radial distance R will be 
assumed to vanish. This, however, means that the value of the matching radius R 
should be chosen large enough so that the neglect of the potentials V,,,,. beyond R 
is an acceptable approximation. This point is the subject of further discussion 
below. 

The M-approximants to the solution of the coupled equations (2.1) are given by 

.FjlM’(r) = 6,,,F,(r) + 1 cj,“‘$,,(r). 
,= I 

(2.6) 

The column vector c of the coefficients c$“) are obtained from the matrix V and the 
column vector b by c = (I - V) ~ ’ b, where the column vectors are of length M x N, 
and the matrices are of dimension (M x N)'. I is the identity matrix, and the 
elements of V and b are given by 

V ,1,,“‘,’ = Cd,,, V,Vi~dH~,~ > (2.7a) 
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and 

(2.7b) 

Here, and in what follows, the meaning of ( ) is the integral 

(A>=jRd(r)dr. (2.8) 
0 

Thus, in Eqs. (7) the upper limit of the integration is R, and complex conjugation 
of the quantities dnj is not involved. 

The scattering S-matrix elements are defined in terms of the asymptotic behavior 
of the functions 9, 

E(Y) = C- ,&Yk,r) J,,, + S,,, g:“(k,,r)lPi. (2.9) 

The function gy” has been defined in Eq. (2), and g’,- ) is its complex conjugate. 
Defining the quantum-mechanical transition T-matrix from channels 1 to M as 

(2.10) 

one obtains the quantum-mechanical scattering matrix elements S for the transition 
from channel 1 to channel n: 

S,,,(L) = b,,, - (4inz/h’k,,) T,,,(L). (2.1 I) 

In the case that long-range (Coulomb) potentials are also present it is sufficient 
to replace the functions gi- ) and gp’ by the respective long-range distorted 
(Coulomb) ingoing and outgoing waves, and also to replace the 6 in Eq. (2.11) by 
S!‘)(L) 6,,1. Here S!“(L) is the S-matrix element obtained when the functionf(k,,r) 
in channel n is matched to the combination of long-range distorted outgoing and 
ingoing (Coulomb) waves, in a manner defined by Eq. (2.9). The spectral Sturmian 
wave numbers K,,i are also changed since the Sturmian functions #,lj are matched 
now to the long range distorted outgoing wave. This question will not be pursued 
further here. 

Making use of Eq. (6) one obtains for the Mth approximant to T 

T!‘?W) = (F,, V,,,F, > + f 2 (F,, K,r4,,,,4 c!y’ 
,‘=I ,,‘=I 

(2.12a) 

with 

(2.12b) 
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The above result, already given in Eq. (2.19) of Ref. [S] is the basic expression 
used for the numerical calculations. It can also be written as 

x (F,, Vnn.q5,1:j.) [I - V],;,!.n..jr. (d,,i-,. V,,., F,). (2.12c) 

According to this equation the quantum mechanical transition from state F, to 
state 4, takes place via the matrix element &,,. r, 

oH~~,l(K,.j., k,) = b,.,., = (c&~~., I’,,,, F, ). (2.13) 

It then “propagates” to the state @Jo,,, via the distorted Green’s function 
[I - V]H;i!-!,n,i.Z and finally ends up in state II via 0,,,,,(k,,, K,,.,,). The second-order 
Born approximation is obtained by replacing the propagator [I - V] ’ by the unit 
matrix I. In the next section numerical applications of the above formalism are 
described. 

III. NUMERICAL ACCURACY ANALYSIS FOR THE 
SCATTERING MATRIX ELEMENTS S 

The two approximations made in the SSM described in Section II consist in 
assuming that the potentials V can be neglected for Y > R, and in replacing the 
infinite space of the basis functions by a finite one. The latter occurs in the trunca- 
tion of the sum over the j’s in Eq. (2.6) or (2.12) at the upper limit M. One of the 
objectives of this section is to identify the part of the spectral basis which gives the 
major contribution to the sums in Eq. (2.12), especially when the incident energy 
is increased. Another objective is to examine the behavior of the S-value as a 
function of the choice of the matching radius R. 

The numerical example consists of a neutron incident at energies between 15 and 
240 MeV on a nucleus approximately of the size of 160. All the potentials V,,,, in 
Eq. (2.1) are of the Gaussian form 

V(r) = ( V, + i W,) exp[ - (r/a)2], (3.1) 

where the parameters VO, W,, and a are given specific values for each combination 
of IZ and n’. For this Gaussian case the indefinite integrals (2.7) which are needed 
for the elements of the matrix V and of the vector b, are calculated with an accuracy 
to better than 10 significant figures by the recursion-relation method described in 
Ref. [21]. With these results, and for a given choice of the upper limit of summa- 
tion M, the coefficients ccM) are obtained from Eq. (2.12b) by using the linear 
equations subroutine LEQ2C from the International Mathematical and Statistical 
Libraries (IMSL) subroutine package. The spectral wave-numbers K,,, needed for 
the specification of the spectral BSFs are obtained numerically to better than eight 



ACCURACY OF A BESSEL-SPECTRAL METHOD 87 

significant figures by a complex Newton-Cotes iterative procedure, which is 
described in the Appendix of Ref. [6]. The logarithmic derivatives at the matching 
radius R needed for the calculation of the wave numbers K,,j are obtained from the 
regular and irregular functions fL(kn R) and g,(k,, R) and their derivatives, which 
are defined in Eq. (2.2). The latter are read into the program with eight significant 
figures. All calculations are done in double precision on an IBM 3081 computer. 

The scattering S-matrix elements are obtained from Eqs. (2.11) and (2.12). 
Because of the truncation of the sums over the indices j at the upper limit M, the 
result for the elastic scattering matrix element is denoted as StM). The maximum 
value of M is denoted as MAX. The numerical value of ScMAX) was compared with 
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FIG. 1. Convergence of the elastic S-matrix elements SCM1 with the size M of the SBF basis for 
various strengths of the distorting Gaussian potentials. The quantity IdS( is the absolute value of .S(“‘- 
S’25’. The angular momentum L is zero; the matching radius R = 11 fm and the example corresponds 
to elastic neutron-oxygen scattering at an incident energy of 15 MeV. The distorting potential is of 
Gaussian form given by Eq. (3.1). The value of the diffuseness a is 4 fm, the values of the depths 
V, + iW, are indicated by the numbers next to the curves, in units of MeV. The maximum value of M 
is MAX = 25. 
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the result obtained from a conventional marching algorithm (Milne’s method given 
by Eq. (25.5.21C) of Ref. [22]), both for a single channel and a coupled channel 
case, and good agreement was found to better than four significant figures. 
However, the accuracy of the marching method was not analyzed to the same 
number of digits as the SSM, and thus the “exact” value of S is unknown. For 
the present purpose the exact value of S is replaced by ScMAx), where the value 
of MAX is chosen as described below. A measure of the rapidity of the convergence 
of SCM) is obtained by calculating the absolute value of the difference between 
s(M) and s’MAX1 

AS(M) = IS’M’ - S’MAx)l. (3.2) 

3.1. Convergence of S with the Size M qf’ the BSF Basis 

In this subsection the sums over ,j and j’ in Eq. (2.12) are carried sequentially 
from 1 to the upper limit III, and the dependence of the corresponding scattering 
matrix element S”“” with M will be examined. 

The results for AS for an uncoupled case (i.e., N = 1) are illustrated in Fig. 1. A 
neutron with laboratory energy of 15 MeV is incident on a nucleus with mass num- 
ber 16. The potential V,, is given by Eq. ( 1) with the value of the surface diffuseness 
a = 4 fm, and various sets of potential strengths ( V,, W,), which decrease suc- 
cessively by factors of two, are used to test the rate of convergence of S with M as 
a function of the potential strength. The largest values of (V,, W,) are (-50 MeV, 
- 10 MeV), which is a reasonable value for the optical potentials which occur 
in the description of nucleonnucleus scattering. The value of MAX is 25, the 
matching radius is chosen to have the value of 11 fm. 

The following features emerge from Fig. 1: 

(a) The error in S (“) decreases nearly exponentially with M for M> 5. For 
each successive value of M the error decreases roughly by one order of magnitude. 
This fast decrease comes to an abrupt halt at a particular value of M, denoted as 
M,, where the speed of the convergence decreases. 

(b) The smaller the value of V+ iW, the more rapidly a given accuracy for 
the S-matrix elements can be achieved. 

For spectral methods an exponential convergence with M is expected for the 
expansion of functions which have no special singularities, such as the scattering 
functions ,q whose expansion is given in Eq. (2.6). The increase of accuracy with 
a decrease of the potential strength is to be expected, since the smaller the potential, 
the less the distorted wave function (9) differs from the undistorted one (F), and 
hence fewer terms are needed in the sum in Eq. (2.6). For a given value of h4 (for 
example, M = 9) the accuracy of S increases by two orders of magnitude every time 
the strength of the potential is decreased by a factor of two. This observation shows 
that the SSM is much more powerful than second-order perturbation theory, for 
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FIG. 2. Same as Fig. 1 for two different values of R, indicated in the figure. The solid (dashed) lines 
indicate the results obtained with method F(I) in which the upper limit of all integrals in Eqs. (2.7) is 
equal to R (m). The maximum value of M is MAX = 30. 

which the accuracy is expected to increase with the square of the reduction factor 
of the potential. 

The change in slope at M, is due to the non-vanishing value of the potential at 
R, as will be now be demonstrated. When the value of the potential at R is 
decreased, which can be accomplished by either decreasing the diffuseness u of the 
Gaussian, or by increasing the value of R, or by decreasing the value V0 + i W,, 
then the position of the break is shifted to smaller values of AS. This is illustrated 
in Fig. 2, where the value of R is increased from 11 to 17 fm, with (P’, W, CI) being 
kept constant at their values ( - 50 MeV, - 10 MeV, 4 fm). The corresponding ratio 
of V(r = R)/V(r = 0) is thereby decreased from 5.2 x lo- 4 to 1.4 x IO-‘. Up to an 
accuracy of lo- I3 no break occurs in the slope of the curve for R = 17, while for 
R = 11 the break occurs in the vicinity of 10. ‘. If one replaces the integrals 
calculated from r =0 to r = R in Eqs. (2.7) by the corresponding integrals from 
r = 0 to R = cci, one obtains the results indicated by the dashed line in Fig. 2. For 
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TABLE I 

S-Matrix Elements for Two Different Values of R” 

Methodh IASI’ 

11 0.208046555 0.250191842 F 1.46 [ -41 
17 0.207991512 0.250056867 F 1.42 [ -81 

11 0.207989274 0.250056637 I 2.24 [ -61 
17 0.20799 1501 0.250056876 I 

“The incident lab energy is 15 MeV, (V, W, u) have the values 
(- 50 MeV, - 10 MeV, 4 fm), there is only one channel, the value of the 
angular momentum is L = 0. 

’ In method F the radial integrals in Eqs. (2.7) go from r = 0 to r = R. In 
method I the same integrals go from 0 to ~8. 

’ (ASI denotes the absolute value of the difference between the value of S 
in the table and the value of S given for R = 17 fm, method I. 

R = 17 fm the results for AS for the two methods of calculation are nearly identical 
up to the values shown, and for R = 11 fm they differ significantly only beyond the 
value of M where the change in slope occurs. 

The two methods of calculation using either the finite or the infinite value of the 
upper limit of the integration are denoted as methods F and Z, respectively. The 
values of the 5’ matrix elements obtained for the two methods are given in Table I. 
The error in S relative to the most accurate value is denoted as [ASI in Table I. It 
is interesting to note that using method I instead of F at R = 11 fm reduces the 
error in S by a factor of 65. This result probably can be shown to follow from the 
particular variational principle upon which the SSM is based [3,4, 241, but a proof 
is beyond the scope of this investigation. That the slope of the curve of 1 ASI with 
M is less steep for the larger value of R can be understood from the fact that there 
are fewer oscillations per unit length in the basis functions dUj for a given value ofj 
the larger the value of R, and hence the overlap integrals h, = (Qi VF,) which 
“drive” the coefficients ci, decrease more slowly with j also. The absolute values of 
these overlap integrals are displayed in Fig. 3 in order to illustrate the above 
remark, and also in order to show the effect of cutting the integration off at Y= R. 
The dashed lines show the result for the integral when the upper limit is equal to 
x. These values are very close to the result obtained with the upper limit equal to 
R (solid lines) for the small values ofj because the contribution to the integral from 
the radial region beyond R is negligible compared to the total integral. As j 
increases, the contribution to the integral from the tail region beyond R becomes 
comparable to the contribution from the interval 0 < r < R, and methods I and F 
give very different results. 

The above results also hold for the case of channel coupling, with the exception 
that for the S-matrix element in the elastic channel it is not as critical that the 
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FIG. 3. The absolute value of the overlap integrals (4, VF,) in units of (MeV fm)“” for two values 

of R for the case described in Fig. 1. The notation and the value of MAX is he same as in Fig. 2. 

potentials in the inelastic channels be small at the position of the matching radius. 
What has to be small are the coupling potentials V,, between the incident channel 
and the other channels at R. This is illustrated in Fig. 4. In this case a Coulomb 
potential is present, and the figure shows the elastic S-matrix element for the scat- 
tering of 21.6 MeV deuterons on the nucleus of 64Ni for an angular momentum 
L = 0. The maximum number of channels employed is six; the excitation energies in 
channels 1, 2, . . . . 6 are 0, 2.923, 4.888, 8.008, 12.245, and 17.592 MeV, respectively. 
The matching radius is at 12 fm. In the radial region 0 < Y < 12 fm only Gaussian 
potentials of the form of Eq. (3.1) are assumed. The values of the parameters 
Vo, I+‘, and a are given in Table II. The corresponding values of AS are shown in 
Fig. 4 by the curves labeled “A.” The accuracy for the one-channel case is much 
higher than for the two- or six-channel cases because the coupling potential VI, was 
chosen to have a long range (a = 7 fm) so that its value at R is not small. When 
the range of V,, is reduced to a = 5 fm, then the accuracy improves, as is illustrated 
by the curves marked “B.” 

Similar results apply for angular momenta L # 0. Since the angular momentum 
barrier shields the Gaussian potentials at small distances, the distorting potentials 
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,2ch; 6ch; A 

I I I I I -I 
5 IO 15 20 25 

FIG. 4. Convergence of S’“) with M for various coupled channel cases, described in the text. It 
illustrates that the size of the inelastic inter-channel coupling potentials at R is not as important for the 
accuracy as is the size of the elastic to inelastic coupling potentials. 

are effectively smaller and good accuracy is already achieved for a smaller size M 
of the Sturmian space. However, the change in slope of the plot of AS with M also 
occurs, and sets in at a value of M, which is close to that for the L = 0 case. 

In conclusion, if a good accuracy in the S-matrix element is desired then the 
choice of the matching radius should be such that the distorting potentials are 
sufficiently small beyond R. However, the larger R, the more basis functions are 
required. If long range potentials are present in the diagonal potentials, such as 
Coulomb potentials, for example, it is preferable to include their effect in the 
outgoing radial functions to which the Bessel-Sturmian functions are matched. If, 
however, long-range potentials are also present in the coupling potentials, then a 
different procedure to handle this case may be required. 

3.2. Selection of the Relevant Space qf the BSF Basis 

As the energy increases, the upper limit M of the BSF basis increases corre- 
spondingly; however, not all the basis functions ,j = 1, 2, . . . . M contribute equally 
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TABLE II 

Gaussian Potential parameters, Defined in Eq. (3.1), 
for the Channel Potentials V,,.(r), case A, 

used in the calculation for Fig. 4 

Channel Channel 
W 

(M!V) (MeV) (fi) n n’ 

v W 

n n’ (MeV) (MeV) (f:) 

1 1 -50 -10 4 5 1 -4 -2 4 
2 1 -11 -4 7 5 2 -10 -3 10 
2 2 -10 -5 7 5 3 -30 -5 10 
3 1 -8 -2 4 5 4 -35 -6 10 
3 2 -15 -4 10 5 5 -40 -7 6 
3 3 -2.5 -6 6 6 1 -2 -2 4 
4 1 -6 -2 4 6 2 -8 -3 10 
4 2 -12 -3.3 10 6 3 -35 -4 10 
4 3 -20 -4 10 6 4 -40 -4 10 
4 4 -30 -7 6 6 5 -45 -5 10 

6 6 -45 -10 7 

to the expansion. Identifying which basis functions are the important ones is the 
subject of this sub-section. 

Figure 5 shows the dependence of AS with M for various energies for the same 
n-l60 example which is discussed in Section 3.1 above. In this calculation there is 
only one channel, the potential parameters (V,, W,, a) are again given by 
(-50 MeV, - 10 MeV, 4 fm) and the value of R is 11 fm. It is seen that, as the 
incident energy increases, the upper limit M of the BSF basis also increases, but the 
slope of the curve of AS with M is the same for all energies. The main difference 
between the various cases is that the various curves are shifted to the right relative 
to each other. The value of M beyond which AS starts to decrease with A4 is 
denoted as M, in what follows. 

The increase of M, with energy can be understood in terms of the behavior of 
the overlap integrals 6, defined in Eq. (2.13), as will now be discussed. Absolute 
values of G,,, ,(K,,, k,) are illustrated in Fig. 6 by the bell-shaped curves for a two- 
channel 240 MeV n-l60 example. They are labeled as C,, in the figure. The potential 
parameters are listed in Table III. It can be seen that the maximum of G,,r occurs 
for a value ofj, to be denoted as j,,,,, such that the real part of K, is closest to the 
incident channel wave number k. This is confirmed in Table IV, with lists values of 
K,, and k, for various incident neutron energies and orbital angular momenta L. 
For 240 MeV, K, is close to k for ,j between 11 and 12 for L = 0, and, indeed, in 
Fig. 6 this is where the maximum of 6i occurs. Beyond this value of j, AS begins 
to decrease with A4 (shown by the full circles), which is consistent with the decrease 
of the 0’s with j. 

For values of ,j progressively less than j, the contribution to S of the basis states 
is also correspondingly small. This can be demonstrated by eliminating all basis 
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M- 
FIG. 5. Convergence of SC”) with M as a function of incident projectile energy. The calculation is 

for the case described in Fig. 1. One channel only is included, the Gaussian potential has a depth of 
- 50 - 1Oi MeV, the diffuseness is a = 4 fm, the matching radius R = 11 fm. 

TABLE III 

Same as Table II for the Calculation 
fhustrdted in Fig. 6 

Channel 
V W 

n n’ (MeV) (MeV) (fi) 

1 1 -50 -10 4 
2 1 -11 -4 5 
2 2 -10 -5 7 
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FIG. 6. How to choose the important basis functions. The large solid and open circles illustrate 
values of IdS”“‘I. The solid circles give the results obtained when the SBF’s d,, included in the calcula- 
tion have values ofj which run from 1 to M. The open circles illustrate the values of IdSCM’I when the 
values ofj start at MLOW and run to MAX = 25, with MLOW increasing progressively from 1 to a 
maximum value of 10. Thus, when the values of j run from 8 to 16, one achieves an accuracy in S of 
one part in 104. This example corresponds to a two-channel calculation for 240 MeV neutrons incident 
on IhO. The gaussian potentials are listed in Table III. The orbital angular momentum L =O, and the 
matching radius is R = I1 fm. The bell-shaped curves illustrate overlap matrix integrals O,,, , detined in 
Eq. (2.13), as a function of the Sturmian index j, in units of (MeV fm)’ ‘. The peaks occur when K, is 
close to the channel momentum k, as can be seen from Table IV. 

states dni for j = 1, 2, . . . . MLOW from the calculations of the matrix V and from the 
column vector b, and carrying out the sums in Eq. (2.12) from j= MLOW to 
,j= MAX. The result for AS is indicated by the open circles in Fig. 6, where in the 
abscissa M stands for MLOW. By combining the information from the open and 
closed circles, one can deduce that an accuracy of better than five figures for S can 
be obtained if a band of 11 j-values, from j= 7 to j= 17 is used in the evaluation 
of Eq. (2.12). This band straddles the K, values around K, g k at the center. 

In conclusion, it is shown that the important basis functions are the ones whose 
number of nodes in a given radial interval is comparable to the number of nodes 

581.‘94/1-7 
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TABLEIV 

Wave Number K, for ~-0’~ Scattering, in Units of fm ~’ 

EdMeW 15 
k(fm-‘) 0.797 

R(fm) I1 

.i K, 

1 0.281 
2 0.555 
3 0.786 
4 1.016 
5 1.290 
6 1.573 
7 1.857 
8 2.143 
9 2.428 

10 2.713 
II 2.999 
12 3.284 

240 15 
3.189 0.797 

11 20 

K, K, 

240 
3.189 

11 L=5 

K, 

0.285 0.156 0.850 
0.571 0.313 1.178 
0.856 0.468 1.485 
1.141 0.620 1.784 
1.426 0.757 2.079 
1.711 0.880 2.370 
1.996 1.026 2.656 
2.280 1.180 2.933 
2.562 1.336 3.176 
2.839 1.493 3.416 
3.094 1.650 3.689 
3.323 1.807 3.972 

OK, are the Sturmian-Bessel wave numbers defined in Eq. (2.4). 
Only the real parts, in units of fm ‘, are listed. The physical wave 
number is denoted by k. It is related to the energy by E= (trk)‘/2m. 
The orbital angular momentum L for the first three columns is 0. For 
the last column it is 5. 

of the incident wave, at least for the Gaussian potentials studied in this paper. This 
type of behaviour has been found also to hold in the spectral solution of the 
Mathieu equation [2], where it is called “sideband truncation” of the basis set. 

IV. SUMMARY AND CONCLUSIONS 

In view of the increased usefulness for certain applications in physics of the spec- 
tral Sturmian method for solving the quantum-mechanical scattering problem, and 
as a result of the advent of a very accurate method to evaluate the required Bessel 
function overlap integrals 1211, a study of the accuracy of the Bessel-Sturmian 
(BSF) expansion method (SSM) for calculating elastic scattering S-matrix elements 
was carried out. The diagonal as well as the coupling potentials used in the 
Schrodinger equation were of Gaussian form, with magnitudes of the type encoun- 
tered in nuclear physics applications. It was found that the error decreased 
exponentially with the number of basis functions included in the calculation, but 
the accuracy does not increase beyond a certain value as a result of the cutoff of 
the potential at the matching radius R. The smaller the value of the potential at R, 
the better the final accuracy which is achieved. Accuracies typically of the order of 
one part in 10’ could be achieved with about 15 BSF elements in each channel. 
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In detail, the conclusions reached from the experience with the gaussian poten- 
tials are: 

(a) In order to obtain good accuracy for S the diagonal potential in the 
elastic channel, as well as the coupling potentials between the elastic and inelastic 
channels should be small beyond the matching radius R. The choice of R is thus 
governed by the range of the potentials. However, the larger the R, the more basis 
functions are required. If long-range potentials are present in the diagonal poten- 
tials, such as Coulomb potentials, for example, it is preferable to include their effect 
in the outgoing radial functions to which the Bessel-Sturmian functions are 
matched. If long-range potentials are also present in the coupling potentials, then 
a different procedure to handle this case may be required. 

(b) The important basis functions which are needed to obtain good accuracy 
are the ones for which the overlap matrix elements Cp,,, (of the potential taken 
between the incident wave and the basis functions in channel n) are large. For a 
smooth potential, such as of the Gaussian form discussed here, this is the case when 
the number of nodes of the basis functions in the interval O-R is comparable to that 
of the incident wave. However, if the potentials have strong repulsive cores, so as 
to have large Fourier components for a large range of Fourier momenta, then the 
above condition is no longer applicable. This was found to be the case in a study 
of the representation of the scattering T-matrix for nucleonnucleon potentials of 
the Reid soft core variety [25]. 

(c) The requirement in (a) that the potential be small beyond the matching 
radius R can be softened by replacing the upper limit R of the integrals by infinity. 
An improvement by a factor of 6.5 in the accuracy in a sample case listed in Table I 
could thereby be achieved. An explanation based on the variational method which 
underlies the SSM has not yet been carried out. 

(d) The computation time for the SSM method could become competitive 
with the more conventional radial mesh “marching” algorithms when the number 
of channels (N) becomes large and when the incident energy increases. For the 
present application to Gaussian potentials, for which analytical methods for 
calculating the overlap integrals exist, an estimate based on Table V in Appendix B 
shows that the crossover point occurs at 80 channels. However, this result is very 
strongly dependent on the type of the method of solution used 171, as well as on the 
architecture of the computer employed. For example, since most of the computation 
time is spent on obtaining the matrix elements of V (their number is proportional 
to N2), which can be calculated independently from each other, a computer with 
parallel architecture probably will favor the SSM already for a smaller number of 
channels. 

APPENDIX A: NORMALIZATION OF THE SPECTRAL BESSEL FUNCTIONS 

An analytical expression will now be given for the normalization constants y,!, of 
the BSFs defined in Eq. (2.4), such that the normalization integral (2.5) is satisfied. 
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The result is 

yij’ ‘fL(Z,,){ vn,R[z;i+ B; - B,, + L2 - L]/(2z;j)}‘!2. (A.1 1 

Here 

z n, = RK, (A.21 

and 

pnj = E, - (iiK,,i)2/2m (A.3) 

is the complex square well potential depth for which ,fId(zni) is the corresponding 
solution of the radial Schrodinger equation. The depth is determined such that F,, 
smoothly matches the solution given by Eq. (2.4b) for r > R. The constants B, 
represent the logarithmic derivatives 

B,= { CrdH:~‘(k,r)/dr]/H’,~‘(k,r)},=.. (A.4) 

The result (A.l) follows from the analytical and recursion relation properties of 
Bessel functions. One can convince oneself that the imaginary part of the quantity 
in square brackets in Eq. (A. 1) is negative and never zero. 

APPENDIX B: COMPUTATION TIME 

The computation times for the various steps needed in the calculation are listed 
in Table V. These times are obtained in 6th of a second from a time-measuring 
subroutine inserted in various points in the Fortran program during execution time. 
The calculation is done on an IBM 3081 model K in double precision, but is not 
vectorized. The time measurements are only accurate to about lo%, since repeti- 
tion of a run would not exactly reproduce the previous one. The entry labeled 
“Total” was extracted from the CPU time for the final Go step. 

Table V shows that by far the largest block of time is used for the calculation of 
the overlap integrals (2.7) needed for the elements of the matrix V. Since, for a 
given value M of the Sturmian basis, the number of such elements is roughly 
proportional to N2, one expects that the total computing time is also proportional 
to N2 for large N. This is indeed borne out by the line in this table labeled 
Total/N2. By contrast, the conventional marching algorithm method of solving the 
coupled equations (Milne’s method given by Eq. (25521 C) of Ref. [22]) increases 
considerably faster than N2. Even though for six channels the conventional method 
is still 12 times faster than the SSM described in this paper, an extrapolation based 
on this table shows that for a number of channels larger than 80, the SSM method 
will be faster. Further, as is shown in Section 3.2, the number of basis functions 
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TABLE V 

Computation Time in &th of a Second for Various Parts of 
the SSM Calculation. as Measured on a IBM 3081 Scalar Processor 

N” 1 2 4 6 
Flh 8 1 2 I 
k,’ 17 32 62 93 
V” 14s 374 111 2534 
Lin. Eq.’ 10 44 197 482 
Total SSM ’ 213 569 1871 4351 

V/N’ 145 94 69 70 
Lin. Eq.jN’ 10 11 12 13 
Total SSM/N’ 213 142 117 120 
(SSMIMA hots? 39 23 15.5 12 

99 

Note. The number of Sturmian states is A4 = 18, the orbital angular 
momentum L = 10. 

0 N is the number of channels in the coupled equations. 
h Calculation of various constants associated to F, defined in 

Eq. (2.3). 
’ Calculation of the Sturmian quantities K, and Ye, defined in 

Eq. (2.4). 
“Calculation of the matrix elements (2.7) by the method of 

Ref. [21]. 
” Solution of the linear equations (2.12b) for the coefficients c!,:‘. 
‘Because of several other steps in the calculation, this number 

exceeds the sum of the various components listed above. 
RThis entry is the ratio of the total calculation time for the SSM 

as compared to the conventional method MA. The latter is Mime’s 
marching algorithm 1221 for solving the coupled equations. It uses a 
radial mesh with 384 points in each channel. 

needed is independent of the incident energy. Hence, the computational effort of the 
SSM is also independent of the incident energy if analytic expressions for the matrix 
elements of V exist. This is not the case for the marching algorithm, since the radial 
mesh size has to be reduced as the energy increases, so as not to loose accuracy. 
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